Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA.

نویسندگان

  • Pavel Vodicka
  • Rajiv Kumar
  • Rudolf Stetina
  • Somali Sanyal
  • Pavel Soucek
  • Vincent Haufroid
  • Maria Dusinska
  • Miroslava Kuricova
  • Maria Zamecnikova
  • Ludovit Musak
  • Jana Buchancova
  • Hannu Norppa
  • Ari Hirvonen
  • Ludmila Vodickova
  • Alessio Naccarati
  • Zora Matousu
  • Kari Hemminki
چکیده

We analysed the associations between genetic polymorphisms in genes coding for DNA repair enzymes XPD (exon 23 A --> C, K751Q), XPG (exon 15 G --> C, D1104H), XPC (exon 15 A --> C, K939Q), XRCC1 (exon 10 G --> A, R399Q) and XRCC3 (exon 7 C --> T, T241 M) and the levels of chromosomal aberrations (CAs) and single-strand breaks (SSBs) in peripheral lymphocytes in a central European population. We also measured the irradiation-specific DNA repair rates and the repair rates of 8-oxoguanines in these individuals. An elevated frequency of CAs was observed in individuals with the XPD exon 23 A allele (AA and AC) genotypes (F = 3.6, P = 0.028, ANOVA). In multifactorial analysis of variance, the XPD exon 23 polymorphism appeared as a major factor influencing CAs (F = 4.2, P = 0.017). SSBs in DNA, on the other hand, were modulated by XPD (F = 4.3, P = 0.023), XPG (F = 4.3, P = 0.024) and XRCC1 genotypes (F = 3.0, P = 0.064). Irradiation-specific DNA repair rates (reflecting mainly base excision repair activity) were affected by XRCC1 (F = 5.9, P = 0.010) and XPC polymorphisms (F = 4.2, P = 0.046, MANOVA). Our results from this study suggest that markers of genotoxicity are associated with polymorphisms in genes encoding DNA repair enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population

Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Study of the association FokI polymorphisms of the XRCC3 gene with the risk of breast cancer in women: brief report

Background: Breast cancer is one of the most common worldwide malignancies among women. Biological data suggest that damage induced by endogenous and exogenous factors affects the integrity of DNA and associated with susceptibility to breast cancer. Single nucleotide polymorphisms (SNPs) in DNA repair genes can associated with differences in the repair efficiency of DNA damage and may affect br...

متن کامل

Cytogenetic markers, DNA single-strand breaks, urinary metabolites, and DNA repair rates in styrene-exposed lamination workers.

The effect of occupational exposure to styrene on frequencies of chromosomal aberrations and binucleated cells with micronuclei and on single-strand break levels in peripheral blood lymphocytes was studied in 86 reinforced plastic workers and 42 control individuals (including 16 maintenance workers with intermittent, low-dose exposure). In these individuals, the irradiation-specific DNA repair ...

متن کامل

DNA breaks and chromosomal aberrations arise when replication meets base excision repair

Exposures that methylate DNA potently induce DNA double-strand breaks (DSBs) and chromosomal aberrations, which are thought to arise when damaged bases block DNA replication. Here, we demonstrate that DNA methylation damage causes DSB formation when replication interferes with base excision repair (BER), the predominant pathway for repairing methylated bases. We show that cells defective in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2004